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Different methods of averaging the radiation transport equations are considered 
in solving two-dimensional nonstationary radiation-gasdynamic problems. 

The transport equation in the case of local thermodynamic equilibrium and in the absence 
of scattering has the following form: 

31~ ( Bs)  r 3 �9 , : = - - k ~  I~--  , where B s~_ 15 
cgs , n a ~ exp(e/T)-- 1 (1) 

The quantity k s is often dependent in a complex manner on its arguments ~, T and on the gas 
density p. The radiation spectrum reflects the characteristic features of the change in 
k C at different points of space. 

The angular distribution of radiation can also be complex in nature. Thus, in the pre- 
sence of hot "nuclei" in the radiating domain, the radiation intensity I~ at this point grows 
strongly for rays incident at such nuclei as compared with the rays passing through them. 
As the characteristic dimension of the hot domain changes, the angular radiation distribu- 
tion also changes. 

In nonstationary radiation-gasdynamic problems, Eq. (I) must be solved multiply for 
different rays passing through each point of space, and for radiation of different wave- 
lengths. An enormous amount of computational work is needed to determine the radiation 
field when the spectral transport equations are integrated in each time layer. However, the 
gasdynamic processes are governed only by quantities integrated over the spectrum and the 
angular variable is governed by the radiation flux. The very nature of the spectral and 
angular radiation distributions often changes comparatively slowly with time. This permits 
utilization of methods of averaging the radiation transport equations -- integrating them 
with respect to the angles and (or) the frequencies by using the true spectral and angular 
radiation distribution found at the time of the averaging. 

i. Averaging with respect to the angular variable in one-dimensional problems is per- 
formed in a quasidiffusion method [i], a flux variation of quasidiffusion [2], and in the 
method of mean fluxes [3, 4]. The quasidiffusion method is even extended to the two-dimen- 
sional case in [I]. It is expedient to use the two-dimensional analog [5] of the method of 
mean flux [3, 4] for substantially nonequilibrium radiation with strong anisotropy. For the 
axial symmetry case, Eq. (i) takes the form 

al'--2-~ cos O a z  + Ol---!Or sinO costp rl 3r sinOsin q ) = -  k~ ( l e - -  B~n: )" (2) 

• + 
The u n i l a t e r a l  s p e c t r a l  r a d i a t i o n  f l u x  d e n s i t i e s  i n  the  r a d i a l  qrr  and a x i a l  qzE d i r e c t i o n s  
are determined by the following expressions: 

q~ = S I~ sin 0 cos q~df2, q~ -- ~f I~ cos OdfL d~ = sin OdOd~p, 

where the domains of integration are 

(3) 
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(o/ : - - a 1 2 < ( p % a 1 2 ,  O < O < a ,  o~7:on/2~.rp<3a/2 ,  O < O < a ,  

~ o ~ : 0 < ~ % 2 a ,  O~O-<zc/2, o ) 7 : 0 ~ ( p < < 2 a ,  a/2,<O<a. 

Let us introduce the functions ~ s  and ~E, characterizing the directivity of the radiation: 

, ~  = q---~, q,~ (4) 

Substitutin~ (4) into (2) and integrating over the solid angle within the limits of the do- 
mains ~r' ~z' we obtain 

_+ 4- + + 

0 (c~qr)or + 0 (CaOz q;-) ST~_q~ - -  k ( q ~ - b 7  - -  2B), 

4- + -b, -~ 

0 (cF~ qT) q_ . . . .  k (qFbF -- 2B), 
Or Oz r 

(5) 

where the subscript s has been omitted for convenience in the writing, and the following no- 
tation has been introduced: 

= j" o cos = 1, = S oos o d a ,  
,(0-- + (0• 
r f 

S7 = &l~+ sin 0 sin (pdg., b~ = ,~;-dO, 

+ ; +  + S @ = :  q~i- sm 0 cos qod~, c~ = r  + cos 0dr2 = 1, 
o~ ~ 

o,~ &p ,,, +- 
z 

(6) 

The system (5) is hyperbolic and can be integrated along the characteristic directions 

dz _ c~, & - (c~)-~ (7) 
dr dr 

In a multigroup approximation k e is replaced by a certain mean coefficient kg in the group 
(the subscript g) within the limits s~ ~ e ~e~, and the quantity B e is replaced by 

gg 
2 

B e = J B~ds. 

+ • 
Shown as an illustration in Fig. 1 are the characteristic directions Czr and Crz for a 

group with the limits 10-18.6 eV, as well as the initial distributions of T and 0 found in 
solving [6] the problem of radiation wave propagation. For characteristic 3-4 eV plasma tem- 
peratures, the main part of its thermal radiation is concentrated in this group. The angular 
distribution of the radiation at each node of the computational mesh was computed for 50 
beams for each of six groups. The absorption coefficients were taken from tables [7]. 

The field C~r and C~z for other groups appears in an analogous way: it does not change 
its nature even at other times. Meanwhile, a strong change in the characteristic directions 
related to the change in angular directivity of the radiation is observed in the zone of the 
highest temperature gradients. As the radiation wave front propagates opposite to the laser 
radiation (incident from the right) and in the direction of laser pulse propagation, the zone 
of an abrupt change in the mean cosines shifts together with the front. Simple freezing of 
the dimensionless coefficients in the averaged equations at the nodes of the computational 
mesh would result in large errors during passage by the originating wave fronts through this 
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Fig. 1. Characteristic directions c + 
(a) and c~ (b) and initial distribu ~r 
tions of t~e temperature T (c) and dens- 
ity p (d) in the problem of propagation 
of radiation originating during absorp- 
tion of neodymium laser radiation with 
flux density i00 MW/cm 2, beam radius 
1.5 cm, and initial air density of i/i0 
of normal for the time 3 psec; T, eV. 

point if the averaging is not repeated after a short time, which would make the method uneco- 
nomical. In [4], it is hence proposed to extract the combinations r, t, the "principal vari- 
able" mR, related somehow to the motion of the fronts mentioned. In this case the optical 
thicknew calculated for a given group along the characteristic direction and measured from 
the characteristic points of the heating wave front, e.g., points with a given temperature 
value, can be used as mg. The application of different principal variables for different 
groups permits extraction of fronts being propagated because of absorption of radiation from 
different sections of the spectrum (different groups). 

The application of a "conversion" permits taking into account, in addition, the change 
in the dimensionless coefficients in the averaged equations with the time t for fixed values 
of mg, and their comparison at the averaging times t k and tk+x and in the stages "count" and 
"convert" affords a possibility of obtaining an objective criterion for the averaging fre- 
quency necessary. 

2. Averaging with respect to the angles but also with respect to the frequencies was per- 
formed in [4] for one-dimensional radiation gasdynamic (RGD) problems. The system (5), which 
is equivalent to the system of equations of the quasidiffusion method or of the diffusion 
approximation, can be averaged also in an analogous manner. However, in a number of cases 
the angular distribution is sufficiently simple and it can be described by using a small set 
of beams, or it is complex and varies so rapidly that the application of averaging with re- 
spect to the angles would be inefficient. In such cases it could be expedient to take the 
average of the transport equation (i) with respect to the frequencies for each of the selected 
set of beams [8]. 

Let us introduce the spectrum of radiation being propagated along a given line and its 
positive (plus superscript) and negative (minus superscript) directions 

: = j'Ita . (8) 
81 

Integrating (I) with respect to E, we obtain 

OF~ • + p Bg 
g F~ kg ~ , 

+ as =-- <k> g- -- (9) 

2 IS2 

< k >-[= k~ede,  kg= k~gde,  ~ g =  
ei e~ Bg 

(lO) 
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We will omit the subscript g on the appropriate quantities in taking the average over the 
whole spectrum s~ = 0 and ~: = ~. In order to characterize the distinction between the true 
and the Planck spectra (its "distortion"), we introduce the distortion factor 

+ P 
~ = < k > ~/te e. ( l i )  

The method of averaging [4] was applied successfully to the solution of a number of 
one-dimensional nonstationary problems: a) on the propagation of strong intensively emitting 
shocks [8-12] ; b) on the interaction of laser radiation of different wavelengths with an ob- 
stacle in a vacuum, the heating and scattering of vapors being formed with their reradiation 
taken into account [13]; c) analogous problems for the case of power fast-particle fluxes [14] 
and thermal radiation impulses [15]; d) on propagation of sub- and supersonic radiation ab- 
sorption waves in gases opposite to laser radiation [16-18]; e) on plane and spherically 
symmetric motions of an emitting gas in explosions [19, 20]. The method turned out to be 
sufficiently effective in all these cases (the averaging is usually made after 200-300 compu- 
tational time layers). Averaging over the spectrum (with averaging over the angles or with 
conservation of the individuality of the separate beams) will apparently be efficient even 
for the solution of two-dimensional problems corresponding to the mentioned one-dimensional 
problems. 

Let us note certain features of the method [4]. The quantity k p characterizes the 
emissivity of a gas volume element, and the quantity <k>~ characterizes the absorption of 

o 

radiation by this same element. Dependences of the quantity ~ (for averaging over the whole 
spectrum) in a uniformly heated volume of air on the distance s measured from the boundary 
of the volume under consideration along a selected direction are presented in [8] for a pres- 
sure p. The difference between <k> and k P can be great. Thus, the values of ~ reach 10-102 
for T = 3. 10a~ and for s < 1 cm and p < i0 bar. For the case of bulk deexcitation we 
obtain from (i), (8), and (ii) 

• k~ Be e= ~" 2 B p <k>g J kg = ke ads/( Bg). (12) 
kg Bg e, 

The role of thesections of the spectrum with the highest values of the spectral absorp- 
tion coefficient <k>~ s is emphasized still more in the calculation of k e than in the case of 

written the Planckmean.in the form Correspondingly, <k> • >> kgP and Eig >> i. The averaged equation (9) can be 

, . + , 
To obtain a sufficiently exact result in domains wzth a strong change zn ~Z, the zntroduction 
of a dense mesh may be required in the numerical integration (13). The peripheral layers 
bounding a transparent medium or a vacuum always emit radiation in a volume manner. Hence, 
the quantity { >> 1 in these domains can also differ strongly from the value of ~g in deeper 
domains of the space. 

In optically thick layers ~g § I, and the passage to the limit to the regime of radiant 
heat conduction is obtained only by using the series expansion of ~g. Sometimes the neces- 
sity to modernize the method of [4] occurs for the case of an optically thick plasma. 

We denote the magnitudes of the radiation intensity for the positive and negative direc- 
tions of the same line by the superscripts + and -. The transport equations become 

OH~ = _ k~ ( &  - -  2B~), OZ~ _ k ,H~ ,  H~  = { ~  - -  I 7 ,  Z~ ---- I + + I-~. (14) 
as Os 

Integrating them with respect to the frequency, we obtain 

_ 2 k f B p ,  az,  _ #7z-&, 
as Os 

E1 8 t  

(15) 
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In the regime of radiant heat conductivity 

Z~ "~ 2B~, Zg ~ 2B,;, H~ 1 OB~ , H ~  1 OB e 
k~ Os ~ k~ Os 

H,,, 1 [i: OB~ 1 de]/(dBg/dT)" 

(16) 

Let us note that those sections of the spectrum where k s are small introduce the main 
contribution to the quantity k~. The equations (15) can be called the equations of quasi- 
diffusion along a beam. Their boundary conditions are given in the form of combinations of 
Z e and He, which requires the application of factorization; however, there is no necessity 
when solving elliptic equations which occur during averaging over the angle. In general, 
variability in the sign of H e can hold, which will result in large differences in kg for a 
small change in He, and such an averaging method will apparently be sufficiently effective 
only in regimes close to radiant heat conduction. The "flux" equations (9) for quantities 
with the superscripts + and -, whose integration is performed independently in opposite 
directions, disclose the specifics of radiation transport best under strong nonequilibrium 
conditions. Since the optical thicknesses and the nature of the temperature distribution 
can be different along different beams passing through a given point, (9) can be used in 
some directions, and (15) in others. 

= 2 -- I 3. On the section AS = s2-s~ withoptical thickness Ar e r e ~e let the quantity 
B e vary between points I and 2 in a linear manner: 

B~ = B I ~ dB~ dB~ B~-- B~ -~--(~-~), -- = ~ (17) e ' a %  dT s ATs 

Then the exact solution of (i) in the interval s1~ s ~<~-.sa has the form 

I ~ = B ~ + [ ~ - -  ~)L~ (1--E~), E~=exp(--A%).  (18) 
d% 

The superscripts i and 2 denote values of the quantities on the interval boundary. Here (18) 
is used in calculating It, then integration is with respect to e, then F~, the radiation spec- 
trum~e, and the coefficient <k>g in (9) are found, and the average equaEion is again solved 
for Fg by using some difference scheme. It is meanwhile possible to take the average of the 
difference equation directly. Such an idea has already been proposed in different forms [21- 
24]. The averaging in [21] was with respect to the frequency for diffusion-type difference 
equations. The coefficients in the averaged equations are assumed frozen. It is noted that 
freezing the solution (freezing the spectrum in our terminology) yields the best results. 
Averaging with respect to the angle and frequency of the flux-type difference equations is 
performed in [22-24]. We perform an analogous averaging of the difference equation (18) -- 
the analog of (i) written along an individual direction. We consequently obtain 

o I i o i , ( B ~ - - B ~ ) L g ,  
F~ = FgEg @ B~, - -  BgAg As 

j I I S I I (19) B~E~d~/Be, 
El El 

AT~ = (k~ + kb As~2. 

For l a r g e  o p t i c a l  t h i c k n e s s e s  (kz e >> 1) and a small  change in  t empera tu re  (B~ : B~) 
the characteristic distance Lg goes over into l~: 

Lg= 2 ~, dBg ( ~ @ ~ - , 1  de = 2 i,(kf)2 - b ~  =-~[(/f)~@(/g)a]- (20) 
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Dependence of the magnitudes of the paths l, 
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cm, on the 
temperature T, eV, at pressures p = 1 and i0 bar. The effective 
paths I e for thickness s = i cm are given by the continuous curves, 
the Planck paths 1p are given by the dashed curves, and the Rosse- 
land paths l R are given by the dash-dot curves. 

Fig. 3. Dependences of the ratio between the paths I e and 1p (a), 
I e and 1 R (b) in air for T = 3 �9 104~ for different pressures p 
(the values of p, bar, are indicated at the appropriate curves) on 
the distance s, cm. 

For small optical thicknesses, L~ ~ As. The effective optical thicknesses and their corres- 
ponding effective absorption factors can be introduced by starting from the following: 

A I kgAAS --  Tg, exp ( - -  Tg) = A~, A exp ( - -  "~) E~g, k~As = "r,~, 

Lg s s 
(21) 

Because of (19), we can write in a form similar to (18): 

o l 9 ! ~ s 
F~, = F ~ e x p ( - - T f ) + B ~ 4 - B g e x p ( - - r ' ~ )  --[(B~. - -  B~)i'r,g] [ 1 -- exp ( - -  r~)]. (22) 

For large optical thicknesses r~ = ks/Lg, k s = i/Lg = k R, while for small we obtain z s = 2Lg/ 
As, k~ = 2/Lg = 2/ As. Let us introduce g g 

A ~  A P E E P s s R = kg/kg,  Ag : kg/kg,  Ag = kg/kg. ( 2 3 )  

and : in [22] in intervals be- lt was proposed to freeze coefficients of the type Ag Eg 
tween the averages. However, this can turn out to be inconvenient, e.g., in the case when 
the size of the cell, and the optical thickness as well, vary strongly, but the mean absorp- 
tion factor itself varies slightly. In conformity with the general idea of using averaged 
equations [4], it isAPrO~osed in [24] to use dimensionless coefficients of the distortion 
coefficients type (A~, Ag and Ag), where they are not frozen, but are interpolated with 
respect to time and ~he principal variable. It is expedient to do this even in the two- 
dimensional case. In problems wh~re moving zones exist for sharp change in the temperature, 
radiation spectra, and fluxes -- "fronts" -- and they are quite definite, it is possible to 
take s -- s f as COg, where s~ is the coordinate of the front on the given beam. 

g 
Let us consider radiation emission and absorption by a uniformly heated layer of gas. 

Integrating (i) with respect to the frequency, finding the quantity F_ we determine the 
�9 ~' 

effective paths I e in such a way that the expresslon written in a form analogous to a gray 
gas would yield the correct value of the quantity Fg = Bg(l--exp(--s//e) + FSexp(--S/Te). 
The quantities I e and I e will naturally depend on the length s. As is seen from Fig. 2, 
dependences of the paths le, Ip and 1 R on the temperature T are qualitatively identical, 
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Fig. 4. Dependence of the quantity ~, cm, 
the mean path characterizing the degree of 
penetration of the external radiation source 
(with a temperature of T = 3" 104~ 
on the temperature T, eV, of an absorbing 
air layer. 

but quantitatively the difference is great. A comparison of the quantities I e and 1p, I e 
and l R displayed in Fig. 3 shows that the difference can reach 102-103 times. Therefore, 
the result of an exact solution of the spectral problem can differ radically from the solu- 
tion for a gray gas. A multigroup approximation usually improves the situation; however, 
as experience in solving the one-dimensional problems shows [8-21], even when applying 10-15 
groups the results of the solution can differ two- to threefold from the solution of the 
spectral problem. Meanwhile, utilization of such a number of groups (in a multigroup ap- 
proximation or by using exact averaging) makes obtaining the solution quite too tedious. 
Hence, it is desirable to average over a minimal number of groups with the greatest step in 
space. 

The effective coefficient k e = lel , which is analogous in meaning to the coefficient k A, 
agrees with it fora uniformly heated gas layer. The difference is just that when using I e to 
estimate the emissivity, the size of the whole emitting volume appears as the characteristic 
dimension, while the size of the elementary cell As emerges as such a characteristic dimen- 
sion in numerical computations using averaging. As Fig. 2 shows, the dependence Ze(S) is 
comparatively weak. It is possible to select k e rather than k P for the reference absorption 
factor in expressions of the type (23) forAY. Let us note that the Rosseland mean path also 
entered the averaged equations in a natural'~manner. When using averaging of the difference 
equation in one-dimensional problems of the type [13], averaging was successfully performed 
with respect to just one group. Averaging of the transport difference equations yields bet- 
ter results than the method of averaging the original differential equation when the tempera- 
ture profile is close to the approximate value used in the construction of the difference 
scheme, and the transport equation can be integrated by a large step in space. Let us note 
that a parameter distribution close to the isothermal is encountered sufficiently frequently 
in problems with strong radiant heat exchange, which results in temperature equilibration. 

The radiation spectrum of external sources can differ radically from the "intrinsic" 
radiation spectrum within the volume under consideration. The dependences of T on T are 
qualitatively different in nature as compared with the dependences /e(T) (Fig. 4). Hence, 
it is expedient to take the av@rage separately for the external and the intrinsic radiation. 
Let us note that the quantity k = 1 -~ is analogous tok E. The advantages of averaging the 
difference rather than the differential equations are less obvious in the case when the char- 
acteristic process is not emission but absorption of the radiation of an external source. 

Stationary problems of the flow around bodies with a substantial radiation role are 
also of great interest. The method of buildup or the iteration method are ordinarily used 
for the solution. In this case the method of averaging can evidently also be used. The 
iteration or buildup processes can here be performed for the "frozen" coefficients in the 
averaged equations, and then averaging should again be performed and duplication of the pro- 
cess occurs. If the solution is executed for many nearby variations, then in a first approxi- 
mation the coefficients in the averaged equations can be taken on the basis of the results 
of computing the preceding variations. 

The ideas of the method in [4] are extendable to the case of a nonequilibrium state of 
a substance. 

NOTATION 

h, Planck constant; ~, frequency; e = hv, photon energy; Ic, radiation intensity with 
photon energy e referred to unit interval of quantum energy; s, distance along a beam whose 
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direction is characterized by the unit vector ~; ks, linear spectral absorption coefficient 
with a correction for stimulated emission; BE, Planck function, ~, Stefan--Boltzmann con- 
stant; T, temperature; r, z, cylindrical coordinates; 8, angle between the beam and the z 
axis; ~ , angle between the projections of the radius-vector of the point (r, z) and the 

�9 �9 �9 i + " projectlon of the beam on the plane z = O; d~, solld-angle element; t, t me, F~ integrated 
(with respect to the frequency) radiation intensity; <k> • absorption factor a~eraged over 
the true spectrum at a given point; k P, Planck mean absorption factor for a given group; l~, 
mean Rosseland radiation path; k~, mean absorption factor corresponding to ~. s 
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AN EXPERIMENTAL INVESTIGATION OF EGD FLOW OF GAS IN A 

CORONA DISCHARGE AND ITS INFLUENCE ON THE MOTION OF 

DISPERSED PARTICLES 

V. Kh. Vigdorchik, A. G. Gagarin, 
and A. I. Mityushin 

UDC 537.523.3+537.291.001 

The procedure and results of an experimental investigation of the EGD gas flow ac- 
companying a corona discharge -- the electric wind -- are presented. It is shown that 
the motion of dispersed particles in a corona discharge is determined mainly by the 
electric wind. 

The motion of gas-dispersed streams in the field of a corona discharge takes place in a 
number of technological devices. Such devices include electric filters, electrostatic sepa- 
rators, devices for depositing various coatings, etc. The processes taking place in such de- 
vices are extremely complicated, and their description is often associated with great mathe- 
matical difficulties. Therefore, experiment still remains the principal method of investi- 
gating these processes. 

The most often encountered method of analyzing the behavior of dispersed particles in 
the field of a corona discharge, placed at the foundation of the design of such apparatus, 
is based on the determination of the Coulomb forces acting on particles charged through ion 
sorption and the forces of hydraulic drag (Stokes forces) [1-3]. In the simplest form this 
approach yields the following equation of motion of a spherical charged particle in an elec- 
tric field: 

d~ - 

m--dr- -- q E - -  6 n ~ a ~  m ~  (1) 

Different variants of Eq. (i) are possible, allowing for nonuniformity of the electric field, 
variability of the particle charge, etc. However, such an approach does not allow for the 
influence on the motion of the dispersed particles of the EGD flow accompanying a corona 
discharge in gases -- the electric wind. The mechanism of its generation is this. In a uni- 
polar corona discharge, when the corona-forming electrode is the cathode, negative gas ions 
are formed near the latter. Under the action of the electric field they move toward the 
oppositely charged electrode and, in the process of motion, in colliding with the neutral 
gas molecules they impart kinetic energy to them: ei = mi~/2. 

The energy obtained by a neutral molecule in a collision with an ion is determined by 
the relation ~n = (mnm~(l--c~ + mn )=" 

In air, in particular, the masses of the 02-, 03- and other ions formed in a corona 
discharge are close to the mass of a neutral molecule. Therefore, an estimate of the effi- 
ciency of kinetic-energy transfer provides a basis for assuming that in each collision act, 
the energy of an ion is fully transferred to a neutral molecule. The collision frequency is 
determined by the gas density and the ion velocity, which depends in turn on the gas tempera- 
ture and the magnitude of the electric field. Mass motion of the gas di!ected away from the 
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